# ASINH Function in Microsoft Excel

## Part 1: Introduction

Definition: The ASINH function in Microsoft Excel returns the inverse hyperbolic sine of a number. The inverse hyperbolic sine is the value whose hyperbolic sine is the number, so ASINH(SINH(number)) equals the number.

Purpose: The purpose of the ASINH function is to calculate the inverse hyperbolic sine of a given number. This can be useful in various mathematical and hyperbolic trigonometric calculations.

Syntax & Arguments:

syntax
`ASINH(number) `

The ASINH function syntax has the following argument:

• Number: This is a required argument. It can be any actual number.

Return value: The returned value is the inverse hyperbolic sine of the number.

Remarks: The ASINH function is used in fields like physics, engineering, and more where hyperbolic trigonometric calculations are needed.

## Part 2: Examples

Let’s look at examples of how the ASINH function can be used in business scenarios.

### Example 1

Purpose of Example: To calculate the inverse hyperbolic sine of a number in a mathematical model.

Data Tables and Formulas:

ABC
1NumberFormulaResult
20.5=ASINH(A2)0.481211825
31.5=ASINH(A3)1.194763217
42.5=ASINH(A4)1.647231146

Explanation: In this example, the numbers represent values in a mathematical model. The ASINH function calculates the inverse hyperbolic sine of these numbers.

### Example 2

Purpose of Example: To calculate the inverse hyperbolic sine of a number in a physics calculation.

Data Tables and Formulas:

ABC
1NumberFormulaResult
21.2=ASINH(A2)1.015973134
32.2=ASINH(A3)1.609438912
43.2=ASINH(A4)1.960094784

Explanation: In this example, the numbers represent values in a physics calculation. The ASINH function calculates the inverse hyperbolic sine of these numbers.

### Example 3

Purpose of Example: To calculate the inverse hyperbolic sine of a number in an engineering calculation.

Data Tables and Formulas:

ABC
1NumberFormulaResult
20.8=ASINH(A2)0.732668252
31.8=ASINH(A3)1.321755839
42.8=ASINH(A4)1.709975946

Explanation: In this example, the numbers represent values in an engineering calculation. The ASINH function calculates the inverse hyperbolic sine of these numbers.

### Example 4

Purpose of Example: To calculate the inverse hyperbolic sine of a number in a financial model.

Data Tables and Formulas:

ABC
1NumberFormulaResult
20.6=ASINH(A2)0.568824173
31.6=ASINH(A3)1.280933845
42.6=ASINH(A4)1.673976433

Explanation: In this example, the numbers represent values in a financial model. The ASINH function calculates the inverse hyperbolic sine of these numbers.

### Example 5

Purpose of Example: To calculate the inverse hyperbolic sine of a number in a statistical model.

Data Tables and Formulas:

ABC
1NumberFormulaResult
20.4=ASINH(A2)0.390035319
31.4=ASINH(A3)1.09290484
42.4=ASINH(A4)1.628499819

Explanation: In this example, the numbers represent values in a statistical model. The ASINH function calculates the inverse hyperbolic sine of these numbers.

### Example 6

Purpose of Example: To calculate the inverse hyperbolic sine of a number and check if it is within a specific range.

Data Tables and Formulas:

ABCD
1NumberFormulaResultWithin Range?
20.5=ASINH(A2)0.481211825=IF(C2>0.5, “Yes”, “No”)
31.5=ASINH(A3)1.194763217=IF(C3>0.5, “Yes”, “No”)
42.5=ASINH(A4)1.647231146=IF(C4>0.5, “Yes”, “No”)

Explanation: In this example, the numbers represent values in a mathematical model. The ASINH function calculates the inverse hyperbolic sine of these numbers. The IF function then checks if the calculated value is within a certain range.

### Example 7

Purpose of Example: To calculate the inverse hyperbolic sine of a number and sum them up.

Data Tables and Formulas:

ABCD
1NumberFormulaResultTotal
20.5=ASINH(A2)0.481211825=SUM(C2:C4)
31.5=ASINH(A3)1.194763217
42.5=ASINH(A4)1.647231146

Explanation: In this example, the numbers represent values in a mathematical model. The ASINH function calculates the inverse hyperbolic sine of these numbers. The SUM function is then used to calculate the total of these values.

### Example 8

Purpose of Example: To calculate the inverse hyperbolic sine of a number and find the maximum value.

Data Tables and Formulas:

ABCD
1NumberFormulaResultMax Value
20.5=ASINH(A2)0.481211825=MAX(C2:C4)
31.5=ASINH(A3)1.194763217
42.5=ASINH(A4)1.647231146

Explanation: In this example, the numbers represent values in a mathematical model. The ASINH function calculates the inverse hyperbolic sine of these numbers. The MAX function is then used to find the maximum of these values.

### Example 9

Purpose of Example: To calculate the inverse hyperbolic sine of a number and find the minimum value.

Data Tables and Formulas:

ABCD
1NumberFormulaResultMin Value
20.5=ASINH(A2)0.481211825=MIN(C2:C4)
31.5=ASINH(A3)1.194763217
42.5=ASINH(A4)1.647231146

Explanation: In this example, the numbers represent values in a mathematical model. The ASINH function calculates the inverse hyperbolic sine of these numbers. The MIN function is then used to find the minimum of these values.

### Example 10

Purpose of Example: To calculate the inverse hyperbolic sine of a number and round it to the nearest whole number.

Data Tables and Formulas:

ABCD
1NumberFormulaResultRounded
20.5=ASINH(A2)0.481211825=ROUND(C2, 0)
31.5=ASINH(A3)1.194763217=ROUND(C3, 0)
42.5=ASINH(A4)1.647231146=ROUND(C4, 0)

Explanation: In this example, the numbers represent values in a mathematical model. The ASINH function calculates the inverse hyperbolic sine of these numbers. The ROUND function then rounds the calculated value to the nearest whole number.

### Example 11

Purpose of Example: To calculate the inverse hyperbolic sine of a number and find the average value.

Data Tables and Formulas:

ABCD
1NumberFormulaResultAverage
20.5=ASINH(A2)0.481211825=AVERAGE(C2:C4)
31.5=ASINH(A3)1.194763217
42.5=ASINH(A4)1.647231146

Explanation: In this example, the numbers represent values in a mathematical model. The ASINH function calculates the inverse hyperbolic sine of these numbers. The AVERAGE function is then used to calculate the average of these values.

### Example 12

Purpose of Example: To calculate the inverse hyperbolic sine of a number and find the median value.

Data Tables and Formulas:

ABCD
1NumberFormulaResultMedian
20.5=ASINH(A2)0.481211825=MEDIAN(C2:C4)
31.5=ASINH(A3)1.194763217
42.5=ASINH(A4)1.647231146

Explanation: In this example, the numbers represent values in a mathematical model. The ASINH function calculates the inverse hyperbolic sine of these numbers. The MEDIAN function is then used to find the median of these values.

## Part 3: Tips and Tricks

1. Remember that the ASINH function returns the inverse hyperbolic sine of a number. It can be used in fields like physics, engineering, and more where hyperbolic trigonometric calculations are needed.
2. The ASINH function will return a value for any actual number.
3. You can use the ASINH function with other Excel functions to perform more complex calculations.
4. Always check your data to ensure it is an actual number for the ASINH function.
5. The ASINH function is an essential tool in hyperbolic trigonometry. It can be used in various fields like physics, engineering, game design, etc.