# DEGREES Function in Excel

Part 1: Introduce

๐ Definition The DEGREES function in Microsoft Excel is designed to convert radians into degrees.

๐ Purpose The primary Purpose of the DEGREES function is to facilitate the conversion of angle measurements from radians to degrees, commonly required in various mathematical and engineering calculations.

๐ Syntax & Arguments

syntax
`DEGREES(angle) `
• Angle: This is the required argument. It represents the angle in radians that you wish to convert.

๐ Explain the Arguments in the function

• Angle: The angle you input should be in radians. The function will then convert this radian value into its equivalent degree measurement.

๐ Return value The DEGREES function returns the converted value in degrees.

๐ Remarks Always ensure that the input value is in radians to get the correct conversion to degrees.

Part 2: Examples

๐ Example 1

• Purpose of example: Convert a primary radian value to degrees.
• Data sheet and formulas:
ABC
21=DEGREES(A2)57.296
• Explanation: This example demonstrates converting 1 radian into its equivalent degree measurement using the DEGREES function.

๐ Example 2

• Purpose of example: Convert ฯ radians to degrees.
• Data sheet and formulas:
ABC
2ฯ (3.14159)=DEGREES(A2)180
• Explanation: ฯ radians are equivalent to 180 degrees. This example showcases the conversion using the DEGREES function.

๐ Example 3

• Purpose of example: Convert half of ฯ radians to degrees.
• Data sheet and formulas:
ABC
2ฯ/2=DEGREES(A2)90
• Explanation: Half of ฯ radians is equivalent to 90 degrees.

๐ Example 4

• Purpose of example: Convert a negative radian value to degrees.
• Data sheet and formulas:
ABC
2-1=DEGREES(A2)-57.296
• Explanation: Negative radian values can also be converted to their equivalent negative degree values.

๐ Example 5

• Purpose of example: Convert a fractional radian value to degrees.
• Data sheet and formulas:
ABC
20.5=DEGREES(A2)28.648
• Explanation: Fractional radian values, like 0.5, can be converted to degrees using the DEGREES function.

๐ Example 6: Using DEGREES with IF Function

• Purpose of example: Convert a radian value to degrees only if positive.
• Data sheet and formulas:
ABCD
2-1=IF(A2>0, DEGREES(A2), “Negative”)Negative
• Explanation: This example uses the IF function to check if the radian value is positive before converting it to degrees. If the value is negative, it returns “Negative.”

๐ Example 7: Using DEGREES with SUM Function

• Purpose of example: Sum the degrees of multiple radian values.
• Data sheet and formulas:
ABCD
21=DEGREES(A2)
30.5=DEGREES(A3)
4Formula=SUM(B2:B3)
• Explanation: This example demonstrates how to sum the degrees of multiple radian values using the SUM function.

๐ Example 8: Using DEGREES with VLOOKUP Function

• Purpose of example: Find the degree value corresponding to a specific radian value from a table.
• Data sheet and formulas:
ABCD
21=DEGREES(A2)0.5=VLOOKUP(C2, A2:B3, 2, FALSE)
• Explanation: This example uses the VLOOKUP function to find the degree value corresponding to a specific radian value (0.5) in the table.

๐ Example 9: Using DEGREES with AVERAGE Function

• Purpose of example: Calculate the average degree value of multiple radian values.
• Data sheet and formulas:
ABC
21=DEGREES(A2)
30.5=DEGREES(A3)
4Formula=AVERAGE(B2:B3)
• Explanation: Using the AVERAGE function, this example calculates the average degree value of multiple radian values.

๐ Example 10: Using DEGREES with MAX Function

• Purpose of example: Find the maximum degree value from a range of radian values.
• Data sheet and formulas:
ABC
21=DEGREES(A2)
30.5=DEGREES(A3)
4Formula=MAX(B2:B3)
• Explanation: This example uses the MAX function to find the maximum degree value from a range of radian values.

๐ Example 11: Using DEGREES with MIN Function

• Purpose of example: Find the minimum degree value from a range of radian values.
• Data sheet and formulas:
ABC
21=DEGREES(A2)
30.5=DEGREES(A3)
4Formula=MIN(B2:B3)
• Explanation: This example uses the MIN function to find the minimum degree value from a range of radian values.

๐ Example 12: Using DEGREES with ROUND Function

• Purpose of example: Convert a radian value to degrees and round the result to two decimal places.
• Data sheet and formulas:
ABC
21.234=ROUND(DEGREES(A2), 2)70.68
• Explanation: This example converts a radian value to degrees and then rounds the result to two decimal places using the ROUND function.

Part 3: Tips and Tricks

1. ๐ Radian to Degree: Always remember that 1 radian is approximately equal to 57.296 degrees. This can be a quick reference for basic conversions.

2. ๐ Inverse Function: If you need to convert from degrees to radians, use the RADIANS function in Excel.

3. ๐งฎ Use with Trigonometric Functions: When working with trigonometric functions in Excel, ensure you use the correct unit (radians or degrees) for your calculations.

4. ๐ Visual Representation: Consider using Excel’s charting tools to visualize the relationship between radians and degrees, especially if you’re working with a range of values.

5. ๐ ๏ธ Error Handling: Ensure the input values are appropriate for the DEGREES function to avoid errors or unexpected results.

6. ๐ Further Learning: Familiarize yourself with the concept of radians and degrees in trigonometry to better understand and utilize the DEGREES function.